Design and deployment of multistable robotic metamaterial

Master's Thesis Defense May 28th, 2024

MAXWELL PATWARDHAN

Presentation Outline

- 1. Project Introduction
- 2. Prior Research
- 3. Robotic Metamaterial Design
- 4. Manipulation Task Primitive
- 5. Conclusions and Future Work

Introduction

Robotic Metamaterial System

Contributions: The design, manufacturing process, and software interface for a novel robotic metamaterial.

Prior Research

Overview Robotic metamaterials

Metamaterials leverage anisotropic properties in a material to exhibit unique, and useful behavior

- Enable robots to perform tasks traditional rigid robots struggle with
- Capable of multiple task primitives
- Robots which can adapt to highly dynamic environments
- Relatively low cost, low energy, and safe

Multistable Soft Grippers, H. Morgan et al.

H. Morgan, J. C. Osorio and A. F. Arrieta, "Towards open loop control of soft multistable grippers from energy-based modeling," 2023 IEEE International Conference on Soft Robotics (RoboSoft), Singapore, Singapore, 2023, pp. 1-6, doi: 10.1109/RoboSoft55895.2023.10121986.

The Metarpillar, Grossi et al.

B. Grossi, H. Palza, J.C. Zagal, C. Falcón, G. During, Metarpillar: Soft robotic locomotion based on buckling-driven elastomeric metamaterials, Materials & Design, Volume 212, 2021, 110285, ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2021.110285

Metamaterial Design

Metamaterial System:

- Lattice structure of modular housings
- Connected via compression springs
- Wireless, individually-controllable nodes
- Nodes tension cables, causing springs to bend

Active Node Assembly

Modular Housing

Bistable Compliant Mechanism

Tensioning System: Inter-node

Tensioning System: Bistable Mechanism

Actuator

Microcontroller

Power Supply

Electrical System Overview

Electrical System Block Diagram

Adafruit Feather ESP32 V2

- Controls the servo actuator
- Communicates with the central controller via MQTT
- Distributes and regulates power to onboard peripheral device
- Displays node state using RGB LED

Servo Motor & Power Supply

FeeTech Fs90R Continuous Rotation Servo

350mAh Lithium Polymer Battery

MQTT Communication Overview

MQTT Structure

- Lightweight publish-subscribe, broker-based network protocol
- Uses Mosquitto broker in local environment to distribute messages
- All clients communicate over Wi-Fi
- Central python controller commands and monitors system
- Highly scalable

Basic Controller Algorithm: Control Node(s)

Embedded Software

Embedded Software

Manipulation Task Primitive

Manipulating a rectangular prism

Manipulating a cone:

Locomotion Primitive

I am performing experiments in the days leading up to the experiment to see if I can get the platform to locomote. I will display results here.

Hemisphere Stable Structure:

"Folded" Stable Structure:

Conclusions & Future Work

Comparison to other systems

Strengths:

- •Modular design
- •Easy to assemble system
- •Highly scalable
- •Easy to reconfigure for biased structure
- •Multiple task primitives

Weaknesses:

•Limited Precision

- Non-deterministic behavior
- •Struggles with high mass objects

Future Work

- Planar locomotion
- 3D Locomotion
- Mechanical sensing and object recognition

Conclusions:

This system provides evidence to the usefulness of robotic metamaterials by performing manipulation (and locomotion?) tasks with trivial control methods and high adaptability.

Thank you for coming!

QUESTIONS?