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Abstract

The goal of this paper is to explore a modified version of the wave equation that
describes the vibrations of a cantilever beam. While the general wave equation is useful
in modeling the transverse motion of a stretched string or similar mediums that do not
oppose bending, the modified beam-wave equation takes inertial properties along with
resistance to bending into account. This paper will begin by applying the method of
Separation of Variables to describe the motion of cantilever beam, and then apply the
method of Variation of Parameters to describe the motion of the vibrating beam. An
experiment to analyze the characteristics of the vibrating beam was executed, and these
experimental results were compared to the results predicted by the derived models.

1 Introduction

1.1 Beam Deflection Background

Beam bending and vibration kinematics are an essential part of engineering analysis.
The manner in which a beam bends under load is not at all intuitive, but using differential
equations, the displacement of a deflecting beam can be calculated. A cantilever beam is
a beam fixed at one end and subject to forces or moments anywhere along its body. The
deflections of a vibrating a cantilever beam can be modeled with a modified version of the
commonly known wave equation.

1.2 Cantilever Beam Vibration

This paper will attempt to solve a model which will measure the displacement of a vibrat-
ing cantilever beam at some given time. First, a homogeneous version of the problem will
be solved using the method of Separation of Variables, and then the method of Variation of
Parameters will be applied to account for a sinusoidal forcing function. An experiment will be
carried out to analyze the behavior of the cantilever beam vibrations, and numerical results
will be compared to data taken from a physical experiment. Lastly, some analysis of those
results will be executed in order to determine certain properties regarding the harmonics of
the cantilever beam.
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2 Model Development

2.1 Beam Model

The motion of a stretched string can be modeled using the general wave equation of the
following form

∂2u

∂t2
= c2

∂2u

∂x2
(1)

where c2 represents the speed of wave propagation along the string and u represents the
transverse displacement of the string from its stagnant position. While this equation is
sufficient in describing the motion of a stretched string and other mediums that offer no
resistance to bending, in order to analyze vibrations for mediums such as a stiff beam,
Equation (1) must be further developed.

To analyze the vibrations of a stiff beam, the following model is used:

ρ
∂2u

∂t2
= −Ek2∂

4u

∂s4
(2)

Where s is the position along the length of the beam, u(s, t) is the transverse displacement
of the beam, ρ is the density of the material, E is Young’s Modulus of the material, and k is
the radius of gyration of the cross-section.

Consider the case of a cantilever beam, in which a stiff beam is held rigidly at one end
s = 0, and the beam is allowed to move freely at the other end s = L. Note that the
Equation (1) contains a fourth-order spatial derivative. Thus, in order to solve this equation,
four boundary conditions are necessary:

u(0, t) = 0, (3a)

∂

∂s
u(0, t) = 0, (3b)

∂2

∂2s
u(L, t) = 0, (3c)

∂3

∂3s
u(L, t) = 0. (3d)

The support boundary conditions, as described by Equations (3a) and (3b), are types
of Dirichlet boundary conditions, and are used to fix values of displacement and rotations
on the boundary. Load and moment boundary conditions, as described by Equations (3c)
and (3d), are types of Neumann boundary conditions, and reflect the fact that no external
bending moment and no external force are applied to the free end of the beam; thus, the
bending moment and shear force at the free end are also zero.

Note that the system defined by Equations (2) and (3) involves the motion of a beam
that is fixed at one end an free to move at the other. The system that will ultimately be
analyzed involves a beam that is being vibrated at a known frequency at one end, and free
to move at the other.
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2.2 Separation of Variables

Prior to analyzing the case of the beam that is vibrated at a known frequency, the method
of Separation of Variables must be used to examine the simpler case in which the beam is
fixed at one end. By applying Separation of Variables, it is possible to solve Equation (2)
subject to the boundary conditions described in Equation (3).

It can be assumed that the displacement of the beam can be separated into two parts,
one of which depends on position, and the other of which depends on time:

u(s, t) = F (s)G(t). (4)

Substituting Equation (4) into the partial differential equation described in Equation (2)
yields the following:

G′′(t)

G(t)
=

−Ek2

ρ

F (4)(s)

F (s)
. (5)

Since the left-hand side of Equation (5) does not change as s varies, it must evaluate to
a constant. Using similar logic, since the right-hand side of Equation (5) does not change as
t varies, it must also evaluate to a constant. Thus, Equation (5) can be set equal to some
constant, λ:

G′′(t)

G(t)
=

−Ek2

ρ

F (4)(s)

F (s)
= λ. (6)

Taking λ to be a negative constant, we have the following equation for G(t)

G′′(t) = −λG(t) (7)

as well as the following equation and boundary conditions for F (s):

F (s) = λF (4)(s) (8a)

F (0) = 0 (8b)

F ′(0) = 0 (8c)

F ′′(L) = 0 (8d)

F (3)(L) = 0. (8e)

A basis for the solutions of Equation (7) is
{
ei

√
λt, e−i

√
λt
}
, and using Euler’s formula,

this basis can be rewritten as
{
cos(

√
λt), sin(

√
λt)

}
. Thus , G(t) satisfies the following:

G(t) = a cos(
√
λt) + b sin(

√
λt) (9)

where a and b are constants.
Note, for mathematical convenience, β can be defined as follows:
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β2 =
ρλ

Ek2
. (10)

A basis for the solutions of Equation (8) is
{
e
√
βs, e

√
βs, ei

√
βs, , ei

√
βs
}
, and using Euler’s

formula, this basis can be rewritten as
{
cos(

√
βs), sin(

√
βs), sinh(

√
βs), cosh(

√
βs)

}
. Thus,

F (s) satisfies the following:

F (s) = c1 cos(
√

βs) + c2 sin(
√

βs) + c3 cosh(
√
βs) + c4 sinh(

√
βs). (11)

Applying the boundary conditions defined in Equation (8) to Equation (11) yields the
following system of equations that the coefficients must satisfy:[

cosh(
√
βL) + cos(

√
βL) sinh(

√
βL) + sin(

√
βL)

sinh(
√
βL)− sin(

√
βL) cosh(

√
βL) + cos(

√
βL)

] [
c3
c4

]
=

[
0
0

]
. (12)

Setting the determinant of the matrix equal to zero, a condition that the nontrivial
solutions must satisfy is obtained:∣∣∣∣cosh(√βL) + cos(

√
βL) sinh(

√
βL) + sin(

√
βL)

sinh(
√
βL)− sin(

√
βL) cosh(

√
βL) + cos(

√
βL)

∣∣∣∣ = 0. (13)

Evaluation of Equation (13) yields the following frequency equation for the cantilevered
beam:

cosh(
√

βnL) cos(
√

βnL) = −1. (14)

Note that the n subscript is included because there are multiple roots which satisfy
Equation (14). Equation (14) can be solved numerically for the constants,

√
βnL, and these

constants, along with Equation (10), can be used to find the natural frequencies of the
cantilever beam.

Equation (11) can be simplified to the following form:

Fn(s) = c4

[(
sinh(

√
βns)− sin(

√
βns)

)
+

(
cos(

√
βnL) + cosh(

√
βnL)

sin(
√
βnL)− sinh(

√
βnL)

)(
cosh(

√
βns)− cos(

√
βns)

) (15)

where the unknown constant c4, which is oftentimes complex, can be determined using
the initial conditions of the beam (in other words, the displacements and velocity of the beam
at the instant t = 0).

Referring back to Equation (4), the spatial solution and time-domain solution can be
combined to describe the beam vibration in the final step of Separation of Variables:

un(x, t) = Fn(s)
[
an sin(

√
λnt) + bn cos(

√
λnt)

]
(16)
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where Fn(s) is given by Equation (15) and λn satisfies Equations (10) and (14).
Applying the Superposition Principle, the solution of the Equation (2) is the linear com-

bination of the product solutions un(x, t):

u(s, t) =
∞∑
n=1

Fn(s)
[
an sin(

√
λnt) + bn cos(

√
λnt)

]
. (17)

Thus, through the method of Separation of Variable, a model that describes the homo-
geneous system is obtained.

2.3 Variation of Parameters

In order to solve the wave equation with known forcing, the method of Variation of Pa-
rameters will be applied to the results found in the previous section. Variation of Parameters
is a method used to solved differential equations with known forcing. Since the partial dif-
ferential equation in Equation (2) is second-order with respect to time, it can be regarded
similarly to a second-order, linear ordinary differential equation with constant coefficients
and a time-dependent forcing function.

Variation of Parameters can be executed in the following manner: once the homoge-
neous solution is known (note that the homogeneous solution must contains two linearly
independent solutions to the homogeneous problem, given that the differential equation is
second-order with respect to time), it can be assumed that the particular solutions is of the
same form as the homogeneous solution, except for the fact that the coefficients now depend
on time. Two equations are needed to solve for the time-dependent coefficients. The first
equation can be obtained by noting that the proposed solution must satisfy the differential
equation. The second equation can come from a variety of places, but in this case, the second
equation will come from a clever assumption that will greatly simplify the calculations in-
volved in this method. Once the two equations are obtained, the time-dependent coefficients
can be determined, and the particular solution can be determined.

Referring to the boundary conditions defined in Equation (3), it is now assumed that at
s = 0, the beam is being vibrated at a known frequency. Thus, the boundary conditions can
be written as follows:

u(0, t) = A sin(Ωt), (18a)

∂

∂s
u(0, t) = 0, (18b)

∂2

∂2s
u(L, t) = 0, (18c)

∂3

∂3s
u(L, t) = 0. (18d)

The initial value problem and the boundary conditions can be redefined such that the
forcing term is moved to the initial value problem, and the resultant boundary conditions
form a vector space. It can be assumed that the initial value problem is of the form
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u(s, t) = w(s, t) + A sin(Ωt)γ(s) (19)

where γ(s) is an unknown function of s. However, since the forcing term, A sin(Ωt) is inde-
pendent of s, this implies that γ(s) = 1. Substituting Equation (19) into Equation (2) yields
the following:

∂2w

∂t2
− AΩ2 sin(Ωt) = −

(
EI

ρA

)2
∂4u

∂s4
(20)

where I is the moment of inertia and A is the cross sectional area, with the following
boundary conditions:

w(0, t) = 0, (21a)

∂

∂s
w(0, t) = 0, (21b)

∂2

∂2s
w(L, t) = 0, (21c)

∂3

∂3s
w(L, t) = 0. (21d)

As outlined in the method of Variation of Parameters, the particular solution with the
forcing term will take the same form as Equation (17), except an and bn are now assumed to
be time-dependent:

u(s, t) =
∞∑
n=1

Fn(s) [an(t) sin(qnt) + bn(t) cos(qnt)] . (22)

Note that the
√
λn terms have been replaced with qn for mathematical convenience. Recall

from the previous section that allowable values for qn are found from Equation (14), where
each n corresponds to an allowable value of qn. For all allowable values of qn, Fn(s) can be
determined using Equation (15).

Applying the method of Variation of Parameters, recall that two equations are needed
to solve for the time-dependent coefficients, where the first equation can be obtained by
differentiating Equation (22), and substituting the results back into the partial differential
equation described by Equation (20). It can be shown that

∂u

∂t
=

∞∑
n=1

Fn(s) [qnan(t) cos(qnt) + a′n(t) sin(qnt)− qnbn(t) sin(qnt) + b′n(t) cos(qnt)] . (23)

Now, a clever assumption can be made, which not only provides the second equation
necessary to solve for the coefficients, but also greatly simplifies the calculations for the
second derivative calculation that is needed to determine the first equation. As outlined in
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the method of Variation of Parameters, one can assume that the second equation is of the
form

a′n(t)u1(t) + b′n(t)u2(t) = 0 (24)

where u1(t) and u2(t) are solutions to the homogeneous problem. In this case, u1(t) =
sin(qnt) and u2(t) = cos(qnt) so

a′(t) sin(qnt) + b′(t) cos(qnt) = 0 (25)

With this assumption, the second time derivative is found to be

∂2u

∂t2
=

∞∑
n=1

Fn(s)
[
−q2nan(t) sin(qnt) + qna

′
n(t) cos(qnt)− q2nbn(t) cos(qnt)− qnb

′
n(t) sin(qnt)

]
.

(26)
Finally, the fourth order spatial derivative is

∂4u

∂s4
=

∞∑
n=1

F 4
n(s) [an(t) cos(qnt) + bn(t) sin(qnt)] . (27)

Substituting Equations (26) and (27) into Equation (20) yields the following result:

∞∑
n=1

Fn(s)
[
−q2n (an(t) sin(qnt) + bn(t) cos(qnt)) + qn (a

′
n(t) cos(qnt)− b′n(t) sin(qnt))

]
+

(
EI

ρA

)2
[

∞∑
n=1

F 4
n(s) [an(t) cos(qnt) + bn(t) sin(qnt)]

]
= AΩ2 sin(Ωt).

(28)

Recall that an(t) sin(qnt)+bn(t) cos(qnt) = 0 is the solution to the homogeneous equation,
so Equation (28) simplifies to

∞∑
n=1

Fn(s) [qn (a
′
n(t) cos(qnt)− b′n(t) sin(qnt))] = AΩ2 sin(Ωt). (29)

Now, it can be shown that for each allowable value of q, the coefficients of Fn(s) are
orthogonal. Note that Fn(s) satisfies the equation

d4

ds4
Fn(s) = q4nFn(s) (30)

since the derivatives of the cosine and sine functions (as well as hyperbolic cosine and
hyperbolic sine functions) repeat every fourth cycle. This equation is subject to the same
boundary conditions given in Equation (8). Two arbitrary eigenvalues and associated eigen-
functions are chosen, {Fn(s), qn} and {Fm(s), qm}, both of which solve Equation (30), imply-
ing that
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d4

ds4
Fn(s) = q4nFn(s) (31a)

d4

ds4
Fm(s) = q4mFm(s). (31b)

Multiplying Equation (31a) by Fm(s) and Equation (31b) by Fn(s), and integrating by
parts twice gives the following:

d4

ds4
Fn(s)Fm(s) =

d

ds

∫
d4

ds4
Fn(s)Fm(s)ds =

d

ds

[
d3

ds3
Fn(s)Fm(s)−

∫
d3

ds3
Fn(s)

d

ds
Fm(s)ds

]
=

d

ds

[
d3

ds3
Fn(s)Fm(s)−

d2

ds2
Fn(s)

d

ds
Fm(s) +

∫
d2

ds2
Fn(s)

d2

ds2
Fm(s)ds

]
(32a)

d4

ds4
Fm(s)Fn(s) =

d

ds

∫
d4

ds4
Fm(s)Fn(s)ds =

d

ds

[
d3

ds3
Fm(s)Fn(s)−

∫
d3

ds3
Fm(s)

d

ds
Fn(s)ds

]
=

d

ds

[
d3

ds3
Fm(s)Fn(s)−

d2

ds2
Fm(s)

d

ds
Fn(s) +

∫
d2

ds2
Fm(s)

d2

ds2
Fn(s)ds

]
(32b)

Equation (32a) and (32b) reduce to

d

ds

[
d3

ds3
Fn(s)Fm(s)

]
− d

ds

[
d2

ds2
Fn(s)

d

ds
Fm(s)

]
+

d2

ds2
Fn(s)

d2

ds2
Fm(s)ds = q4nFm(s)Fn(s)

(33a)
d

ds

[
d3

ds3
Fm(s)Fn(s)

]
− d

ds

[
d2

ds2
Fm(s)

d

ds
Fn(s)

]
+

d2

ds2
Fm(s)

d2

ds2
Fn(s)ds = q4mFn(s)Fm(s)

(33b)
Subtracting Equation (33a) from Equation (33b), integrating over 0 < s < L, and apply-

ing the boundary conditions from Equation (8) gives the following result:

(q4m − q4n)

∫ L

0

Fm(s)Fn(s)ds = 0. (34)

However, since qm and qn are unique eigenvalues, the integral must evaluate to zero for
Equation (34) to be true. Thus, by the definition of orthogonality, every Fn(s) is orthogonal.

Now, Equation (29) can be rewritten such that a
∑∞

n=1 Fn(s) term can be factored out
on both sides:

∞∑
n=1

Fn(s) [qn (a
′
n(t) cos(qnt)− b′n(t) sin(qnt))] =

∞∑
n=1

BnFn(s)
[
AΩ2 sin(Ωt)

]
(35)

in which
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∞∑
n=1

BnFn(s) = 1 (36)

Equation (35) can now be re-written as

∞∑
n=1

Fn(s)
[
qn (a

′
n(t) cos(qnt)− b′n(t) sin(qnt))−BnFn(s)

(
AΩ2 sin(Ωt)

)]
= 0 (37)

Once again, orthogonality is utilized. By taking the inner product of both sides of Equa-
tion (35) with Fj, recalling that the Fn terms are orthogonal, the only term that survives is
when n = j. Therefore,

|Fj(s)|
[
qj
(
a′j(t) cos(qjt)− b′j(t) sin(qjt)

)
−BjFj(s)

(
AΩ2 sin(Ωt)

)]
= 0 (38)

In addition, the orthogonality of the Fn terms can be employed to find an equation for
Bn. Multiplying both sides of Equation (36) by Fj and integrating from 0 < s < L yields
the following equation that Bn must satisfy:

Bj

∫ L

0

F 2
j (s)ds =

∫ L

0

Fj(s)ds (39)

Equations (25), (38), and (39) desribe a system of three equations containing three un-
knowns: a′n(t), b

′
n(t), and Bn. Solving this system will yield solutions to the desired coeffi-

cients. The coefficients an(t) and bn(t) can be solved for using Equations (25) and (38), and
applying Cramer’s rule. If the determinants D, Da, and Db are defined as

D =

∣∣∣∣ sin(qnt) cos(qnt)
qnt cos(qnt) qnt sin(qnt)

∣∣∣∣ = −qn (40a)

Da =

∣∣∣∣ABnΩ
2 sin(Ωt) cos(qnt)
0 qnt sin(qnt)

∣∣∣∣ = ABnqnΩ
2 sin(Ωt) sin(qnt) (40b)

Db =

∣∣∣∣ sin(qnt) ABnΩ
2 sin(Ωt)

qnt cos(qnt) 0

∣∣∣∣ = −ABnqnΩ
2 sin(Ωt) cos(qnt) (40c)

then, as outlined in Cramer’s rule, a′n(t) and b′n(t) are equivalent to the following:

a′n(t) =
Da

D
= −ABnΩ

2 sin(Ωt) sin(qnt) (41a)

b′n(t) =
Db

D
= ABnΩ

2 sin(Ωt) cos(qnt). (41b)

Software such as Mathematical can be used to integrate Equation (41), which yields the
following result for an(t) and bn(t):

an(t) =
ABnΩ

2 (sin(qnt) sin(Ωt) cos(Ωt)− Ω sin(qnt) cos(Ωt))

(qn − Ω)(qn + Ω)
(42a)
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bn(t) =
ABnΩ

2 (qn sin(qnt) sin(Ωt) + Ω cos(qnt) cos(Ωt))

(qn − Ω)(qn + Ω)
(42b)

Finally, Bn can be evaluated by integrating Equation (39).
Thus, through the method of Variation of Parameters, a model of the physical system

involving a cantilever beam that is vibrated at a known frequency is obtained.

3 Numerical Experiment

3.1 Experiment Overview

Each of the exact solutions to Equation (2) is called a “Fourier mode,” and the solution to
the initial value problem can be constructed by summing over these “Fourier modes.” Each
“Fourier mode” has a corresponding frequency of vibration and spatial structure, which can
be experimentally explored. The purpose of this experiment was to show that the “Fourier
modes” of each strip correspond with natural frequencies, as defined by Equation (14).

To explore these spatial structures at specific frequencies, an experiment was carried out in
which resonant strips of different were vibrated at fixed frequencies and the spatial structures
were observed. In order to do this, a waveform generator was attached to to a Mechanical
Wave Driver via BNC and banana cables. A collection of resonance strips were attached to
the wave driver which were then vibrated at a voltage with varying input frequencies. While
voltage of 2V was initially used, it was eventually increased to 6V, as the vibrations were
significantly more pronounced.

The input frequency was initially set to 20Hz, and then slowly incremented to determine
harmonic frequencies. Once a particular beam was at a harmonic, a strobe light was tuned
to flash at an identical frequency, making the beam appear as if it had been frozen in place.
By slightly varying the frequency of the strobe light while the beam was at a harmonic
frequency, the beam appeared to move in slow-motion. In an effort to preserve the equipment,
the frequency was kept between 20Hz and 180Hz, as anything outside of this range could
damage either the mechanical wave driver and resonance strips.

The fundamental frequencies that characterized the first mode of vibration were found for
all six strips. Then, the harmonic frequencies that characterized the second mode of vibration
were found for the longest three strips. Finally, the harmonic frequency that characterized
the third mode of vibration was found for the longest strip. For the harmonic frequencies
that were found, the distance between the nodes was also recorded.
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Figure 1: Experimental setup with waveform generator and mechanical wave driver (with
resonance strips) attached via BNC cable.

3.2 Determining the Harmonic Frequencies

To numerically determine the harmonic frequencies of the resonant strips used in this
experiment, Equation (14) can be applied. As mentioned earlier, for each value of L in
Equation (14), there are multiple roots that satisfy the equation.

Figure 2: Solutions of Equation (14) for various values of L.

For these various values of L, Equation (14) can be solved, which yields the following
values for λ :
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Length(cm) λ1 λ2 λ3

13.1 570.4 22,219.6 174,205.5
12.1 783.6 30,526.8 239,334.7
11.1 1,106.5 43,105.3 N/A
9.1 2,429.7 95,423.8 N/A
8.1 3,870.7 152,013.0 N/A
7.1 6,556.7 257,506.8 N/A

Table 1: Solutions of Equation (14) for various values of L.

Upon initial analysis, these values appear unreasonably high. To fix this, dimensional
analysis can be utilized to find the units of λ. Equation (14) must be unitless, which implies
that

√
βnL is unitless as well. If Equation (9) is substituted into this, the following equation

is obtained. Note that

√
βnL =

4

√
ρλ

Ek2
· L

where substituting units yields the following result:

4

√
kg

m3
· λ · m · s2

kg
· 1

m2
=

4
√
λ · s2

Since the above expression must be unitless, it is clear that the units on λ must be 1
s2

or Hz2. This means that taking the square roots of the values found before will provide the
true harmonic frequencies for each strip. The frequencies were found as follows:

Length(cm) ω1 ω2 ω3

13.1 23.9 149.1 417.4
12.1 27.9 174.7 489.2
11.1 33.3 207.6 NA
9.1 49.2 308.9 NA
8.1 62.2 389.9 NA
7.1 81.0 507.5 NA

Table 2: Harmonic frequencies for various values of L.

The position of the nodes at each harmonic frequency is dependent on which harmonic
frequency the beam is vibrating at. At the first harmonic frequency, the node will sit at
s = L. For the second frequency, there should be two nodes at s = L and s = L

2
. For the
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third frequency, there should be three nodes at s = L, s = 2L
3
, and s = L

3
. The position of

the nodes can be summarized as follows:

Length (cm) node position (cm), ω1 node position (cm), ω2 node position (cm), ω3

13.1 13.1 6.6, 13.1 4.4, 8.7, 13.1
12.1 12.1 6.1, 12.1 4.0, 8.1, 12.1
11.1 11.1 5.6, 11.1 3.7, 7.4, 11.1
9.1 9.1 4.6, 9.1 3.0, 6.1, 9.1
8.1 8.1 4.1, 8.1 2.7, 5.4, 8.1
7.1 7.1 3.6, 7.1 2.3, 4.7, 7.1

Table 3: Node positions for harmonic frequencies for various values of L.

3.3 Relationship Between Harmonic Frequencies

Modern musical instruments are tuned such that there is perfect symmetry an octave
apart. Take for example that a middle A-note is tuned to vibrate at 440Hz. An A-note
one octave above it will have a frequency of 880Hz, similarly an A-note one octave below
will have a frequency of 220Hz. In Western Music Theory, there are twelve notes, and on
a stringed instrument, each note is tuned to be an equal step from the last in each octave.
This means that each harmonic frequency occurs at a frequency that is

√
12 times larger than

the previous one. This causes stringed instruments to be melodic. If the ratio between the
first two harmonic frequencies for any of the beams is compared, it can be shown that the
second harmonic frequency is around 6.2 times larger than the first harmonic frequency. If the
harmonic frequencies of the cantilevered beams are rationally related, it would be expected to
find the third harmonic frequency 6.2 times higher than the second. However, the calculated
ratio between the second and third harmonic frequencies of all the beams is found to be
around 2.8. This change indicates that there is not a constant rational relationship between
each harmonic mode for a stiff beam.

3.4 Comparison of Experimental and Analytic results

During the experiment the following data were collected:

Length(cm) ω1 ω2 ω3

13.1 21.4 138 N/A.
12.1 24.5 165 N/A
11.1 35 179 N/A
9.1 44 N/A N/A
8.1 56 N/A N/A
7.1 69 N/A N/A

Table 4: Experimentally determined harmonic frequencies for various values of L.
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The values collected during the experiment were consistently below the values predicted
by the analysis, and the error of these measurements ranged from 10% to 15%. This error
can likely be attributed to the experimental setup. Note that all six beams were connected
during the experiment. In addition, at the beginning of the experiment, each beam was
equally spaced, but as the data was being collected, the vibrations caused the beams to
move and distorted the spacing between each beam. These factors, combined with the
loose fastening of the beam to the vibrating pin, would likely cause some damping in the
vibrations of each beam. While there are other potential factors that could be the cause of
the discrepancy, these sources of dampening are the likely reason the results were below the
predicted values. Interestingly, there was one single measurement where the measured value
was actually larger than the predicted value, which occurred for the first harmonic frequency
of the 11 centimeter beam.

The measured positions of the nodes for each harmonic frequency are summarized in the
following table:

Length (cm) node position (cm), ω1 node position (cm), ω2 node position (cm), ω3

13.1 13.1 6.4, 13.1 N/A
12.1 12.1 6.2, 12.1 N/A
11.1 11.1 5.5, 11.1 N/A
9.1 9.1 N/A N/A
8.1 8.1 N/A N/A
7.1 7.1 N/A N/A

Table 5: Experimentally determined node positions for harmonic frequencies for various
values of L.

The predicted and experimentally determined values are quite similar. However, it was not
possible to experimentally determine the node positions of the second harmonic frequencies
for the beams that were 9 centimeters or shorter, nor any frequencies for the third harmonic,
as it was decided that trying to test those frequencies could have resulted in damage to the
experimental equipment.

3.5 The Speed of Waves Through a Beam

The speed of a wave through a stretched string is defined as ω
k
, where ω is the angular

frequency of the wave and k is the wave number. For a stiff beam, this equation becomes
more complicated. To determine the speed of waves through a beam, an equivalent statement
for ω must be determined. This can be done using the following equation:

β =
λρ

Ek2
. (43)

Recall from Equation (47) that λ is in units of Hz2, let λ = ω2, and substitute into
Equation (46):
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β =
ω2ρ

Ek2
. (44)

Now solving this equation for ω yields:

ω = ±βk

√
E

ρ
(45)

Because the speed of the wave is being calculated, the absolute value of ω can be used.
For the motion of waves in a stiff beam, it is clear to see that

√
β is equivalent to the wave

number in a stiff beam. Dividing Equation (45) by this value yields:

ω√
β
= k

√
Eβ

ρ
(46)

This equation is the speed of wave propagation through a stiff beam. It is evident that
the wave propagation depends on β, which changes depending on how fast the beam is being
vibrated.

4 Conclusion

4.1 Summary of Results

In this paper, a partial differential equation was introduced to extend the wave equation
and describe the vibrations of stiff beam. By using the method of Separation of Variables,
a spatial domain equation and time domain equation were determined, and combined to
ultimately determine a solution describing the transverse displacement of the beam for the
homogeneous case, where the beam is fixed at one end and free to move at the other end.

Next, the boundary conditions were modified to account for the fact that the beam is
vibrated at a known frequency at the fixed end and free to move at the other end. To
solve this partial differential equation with a time-dependent forcing function, the method of
Variation of Parameters was applied. A solution describing the transverse displacement of
the vibrating beam, including equations that describe the time-dependent coefficients of this
solution, were found.

Finally, an experiment was carried out, where a series variable-length cantilever beams
were oscillated at various frequencies. Equation (14) was solved in order to find the expected
frequencies for which harmonics occur. From this, the experimental frequencies could be
compared against expected frequencies. It was shown that the experimental frequencies were
10-15% lower than what was numerically calculated. There are many potential reasons for
this, the most likely of which was a partial damping effect at the base of the resonance strips.

In addition, it was shown that there is no rational step between harmonic frequencies of
strings, rather there exists an ever-changing ratio between each fundamental harmonic.
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4.2 Future Research

In future it might prove interesting to study the motion of beams with different forcing
functions, changing the boundary condition for solving with variation of parameters. Another
interesting thing to explore could be changing the shape of the beam; potentially studying
something with a circular or triangular cross section.
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